

Sustainable Development Goal Indicator 6.3.2

National Focal Point Feedback Report 2025

Global Environment Monitoring System for Freshwater

Disclaimer

This publication may be produced in whole or in part and in any form for education or non-profit purposes without special permission from the copyright holder provided acknowledgement of the source is made. No use of this publication may be used for sale or for any other commercial purpose whatsoever without prior permission in writing from UNEP GEMS/Water. The designation of geographical entities, and the presentation of the material herein, do not imply the expression of any opinion whatsoever on the part of the publisher or the participating organizations concerning the legal status of any country, territory or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Trademark names and symbols are used in an editorial fashion with no intention on infringement on trademark or copyright laws.

Report author: Stuart Warner

Report reviewers: Kilian Christ, Melchior Elsler and Marie Bourbon, Philipp Saile, Mortiz Heinle, Dmytro Lisniak.

July 2025

Suggested citation: UNEP GEMS/Water (2025) Sustainable Development Goal Indicator 6.3.2, National Focal Point Feedback Report 2025. UNEP. Nairobi.

United Nations Environment Programme
GEMS/Water Programme
United Nations Office at Nairobi
UN Avenue, Gigiri,
Nairobi,
Kenya.
[e-mail: sdg632@un.org](mailto:sdg632@un.org)

Acknowledgements

This report would not have been possible without the efforts of the national technical focal points that completed the survey in each country.

Photo: Rokel River, Sierra Leone. Accreditation:
GEMS/Water

Contents

Acknowledgements	1
Contents.....	2
Introduction	3
Context.....	3
Feedback Process Methodology	4
Summary of Responses.....	4
Feedback Responses Summary.....	5
Ambient Water Quality Perceptions	5
2023 Data Drive Experience.....	7
How can we improve implementation, support and engagement?	8
National and international coordination	9
Capacity Development.....	10
Financing.....	11
Additional Comments	12
Summary and Way Forward	14
Capacity Development	14
Indicator Calculation Support	14
Develop Data Management Capacity	14
1.3: Translation of courses.....	14
Networking and Outreach	14
Provide networking facility	14
Increase Engagement in Asian Regions	14
Promote Transboundary Cooperation.....	14
Implementation Improvements	14
Develop a Biological Level 2 Methodology	14
Develop a Macroplastics Level 2 Methodology	15
Develop a Satellite-based Earth Observation Level 2 Methodology	15
SDG Water Quality Online Hub Functionality	15
Potential Case Studies	15
National Case Studies from Under-Represented Regions	
15	
Biological Monitoring.....	15
Earth Observation.....	15
Citizen Science	15
River Basin Indicator Calculation	15
Next Steps	16

Introduction

Sustainable Development Goal Indicator 6.3.2 measures progress towards SDG Target 6.3 by providing countries with a tool to assess ambient freshwater quality. It provides a measure of the quality of water in rivers, lakes and groundwaters, and how they change over time.

This report summarises the findings of the third feedback process for this indicator 6.3.2. Gathering feedback from those tasked with reporting for their country ensures that this indicator maintains its relevance and that the methods of implementation are optimised.

This report describes the feedback process and the key findings that will guide the implementation of this indicator over the coming years.

The SDG Indicator 6.3.2 methodology helps countries to report on ambient water quality in a consistent and straightforward manner and has undergone several iterations since conception in 2016.

Previous methodological and implementation improvements that were developed based on feedback and ideas from the National Focal Points include: the development of the SDG Water Quality Hub; new technical documents; provision of the ‘indicator calculation service’; targeted capacity development packages; and the refinement of the Level 2 concept.

Further details about the indicator methodology can be found through the [SDG Water Quality Hub](#)¹

Sustainable Development Goal 6

Ensure availability and sustainable management of water and sanitation for all

SDG Target 6.3

By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally

SDG Indicator 6.3.2

Proportion of bodies of water with good ambient water quality

Context

SDG 6 is designed specifically to ensure progress around water and sanitation, and although some progress has been made since 2015, acceleration is needed to ensure this goal is reached by 2030. Specifically for this indicator, the 2024 SDG 6.3.2 Progress Report presents the latest results and findings through its implementation (UNEP 2024²).

The UN Environment Programme (UNEP) is the custodian agency of three SDG 6 indicators: Indicator 6.3.2 on ambient water quality; Indicator 6.5.1 on the degree of Integrated Water Resource Management (IWRM); and, Indicator 6.6.1 on the extent of freshwater ecosystems. UNEP's Global Environment Monitoring System for Freshwater (GEMS/Water) acts as the implementing programme for SDG Indicator 6.3.2.

Over a nine-year period, the indicator methodology has been through a series of design, implementation, feedback, and review cycles. It is the results of the most recent component of this cycle, the *2024 Feedback Process* which sought input from those tasked with reporting in their country (National Focal Points or NFPs) that are summarised in this report.

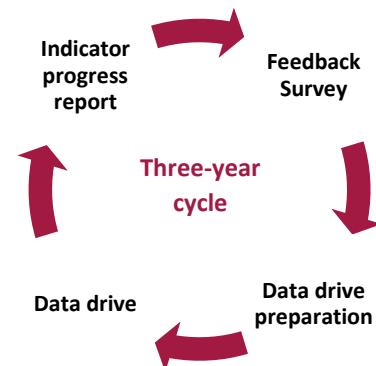


Figure 1: Three-year implementation cycle for SDG Indicator 6.3.2

¹ <https://sdg632hub.org/>

²United Nations Environment Programme (2024). Progress on Ambient Water Quality: Mid-term status of SDG Indicator 6.3.2 and acceleration needs, with a special focus on Health, Nairobi

<https://www.unwater.org/publications/progress-ambient-water-quality-2024-update>.

Feedback Process Methodology

Feedback was gathered from the NFP network. These are individuals or teams in countries tasked with the official reporting on this SDG indicator.

Following each submission, an online survey was shared with the NFP. This survey included questions that were arranged into six topics (Annex 1). These were:

- ambient water quality perceptions;
- feedback on experience of the 2023 data drive;
- feedback on implementation, support and engagement;
- SDG 6 national and international coordination;
- Capacity development for water quality monitoring and assessment; and,
- financing for water quality monitoring.

The survey results received were considered in terms of SDG region and national GDP per capita. SDG Regions are defined by the United Nations Statistics Division. Further information can be found on their [website](#)³. For the GDP analysis, countries were assigned to one of four categories. The GDP categories were established by placing all 193 UN Member States in order by GDP per capita and assigning an equal number of countries to four groups (quartiles). Q1 countries are the lowest-income and Q4 the highest.

Summary of Responses

Forty-two survey responses were received. These responses are shown by SDG Region in Figure 2. Most responses were received from *Sub-Saharan Africa* with *Europe and Northern America* and then *Latin America and the Caribbean* close behind. Countries from Asian regions and Oceania were under-represented. This pattern reflects regional trends in reporting for this indicator.

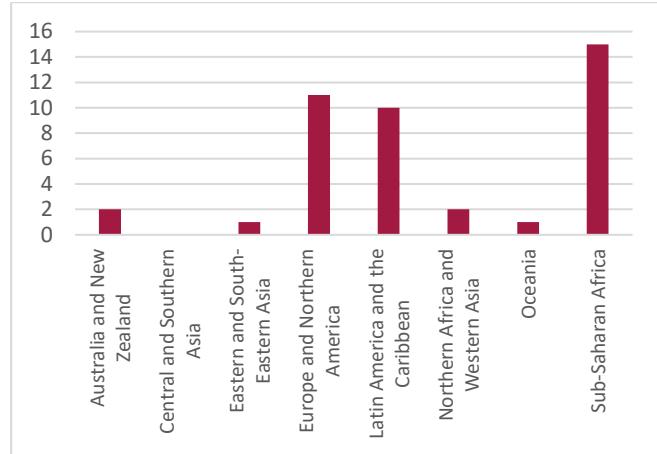


Figure 2: Count of survey responses by SDG region

An analysis of the gender of respondents showed that there was near-equal gender representation when considering all responses (Figure 3).

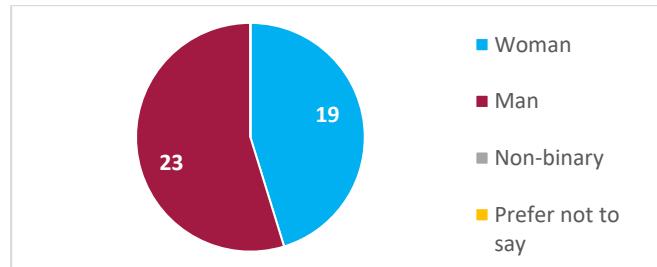


Figure 3: Proportion of survey responses by gender of respondent

Of the four GDP categories, there was an even spread across all four GDP categories with slightly fewer from the Q2 quartile category (Figure 4).

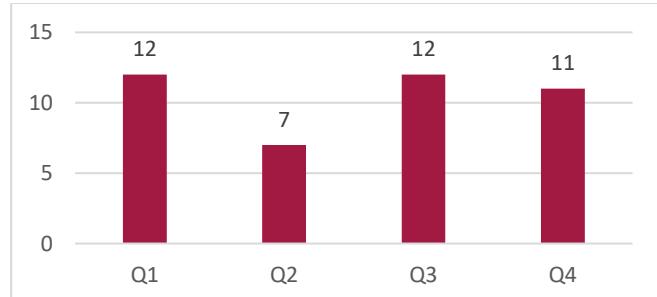


Figure 4: Count of survey response by GDP category

³<https://unstats.un.org/sdgs/report/2019/regional-groups/>

Feedback Responses Summary

A summary of the survey responses is presented below.

Ambient Water Quality Perceptions

Seven questions were asked to help understand how ambient water quality is monitored and assessed and to better understand respondents' perceptions of their country's capacity.

Of the four GDP categories (Q1 – Q4), more respondents from Q4 countries reported that their ambient water quality monitoring systems were reliable compared with those from other GDP categories (Figure 5).

Of the three water body types, respondents said that groundwater monitoring systems were the least reliable compared with surface waters (Figure 5).

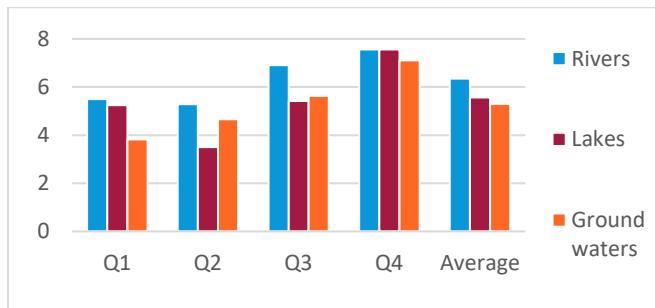
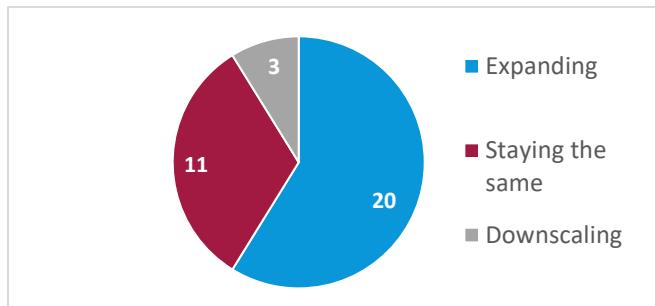



Figure 5: Average score of survey responses by GDP category to question: Are ambient water quality monitoring sufficient to reliably identify long-term water quality trends at the national scale? (1 = not at all, 10 = completely)

The majority of respondents reported that monitoring programmes are expanding in their country, with a few stating that they are downscaling (Figure 6).

Error! Reference source not found. Figure 6: Proportion of responses to question: Are monitoring programmes upscaling, staying the same, or downscaling?

Across the GDP quartile groups, there was little difference in opinion on whether water quality will improve by 2030 as shown in Figure 7 below. The maximum and minimum scores are illustrated by the whiskers.

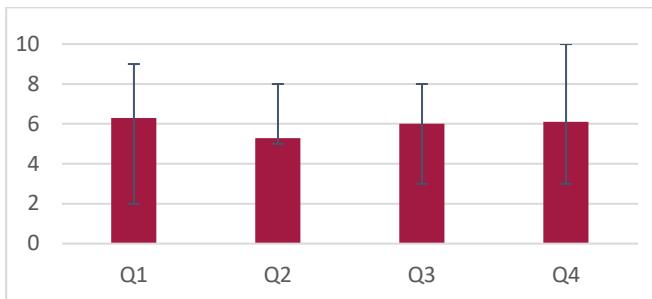


Figure 7: Average score reported to question: In your opinion, how likely is it that you will be able say that water quality has improved between 2015 and 2030 in your country? (1 = very unlikely, 10 = very likely)

Participants were asked to consider the action most urgently needed to improve water quality in their country. When looking at all responses – 'Increasing the amount of wastewater treated' was selected as the priority by most respondents (Figure 8).

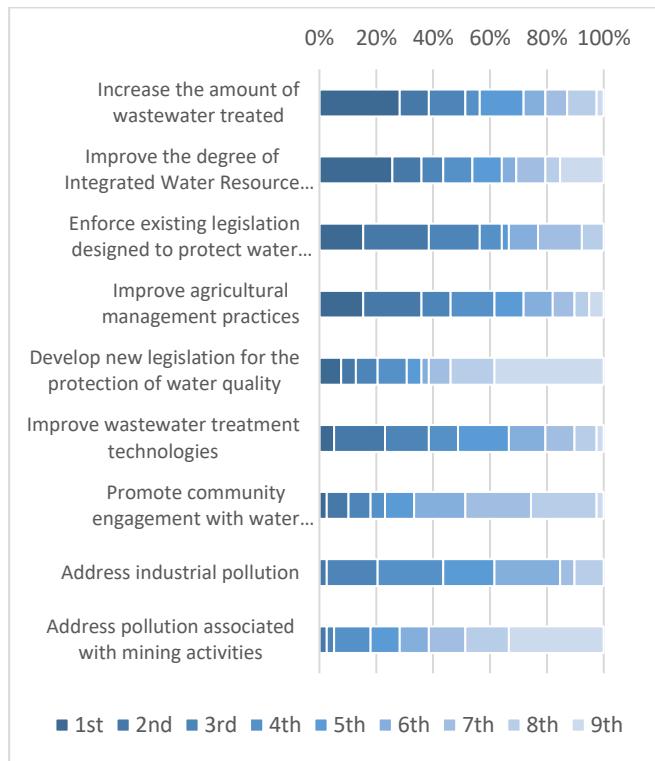


Figure 8: Proportion of responses by rank to question: In your opinion, please rank (by dragging) the action most urgently needed to improve water quality in your country?

The majority of respondents reported that both men and women were affected equally by poor water quality in their country (Figure 9). Analysing the responses by GDP quartile revealed that this was universal only in the Q4 quartile countries. Over 40 per cent of respondents from Q1 countries reported that there is a difference.

Additional comments included reference to poor water quality causing women and girls to experience a disproportionate impact due to traditional gender roles and socioeconomic factors. While both men and women face health risks, women are primarily responsible for fetching

clean water—sometimes traveling long distances, especially in rural areas—and caring for sick family members affected by waterborne diseases. Economic disparities also play a role, as access to better water sources often depends on purchasing power, leaving lower-income communities more vulnerable to contamination and its consequences.

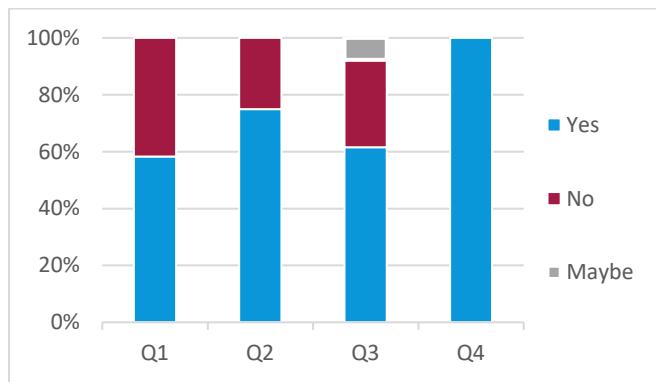


Figure 9: Proportion of responses to question: Does poor water quality affect both men and women equally in your country?

Rivers were identified as the water body type most under threat. This was consistent across all GDP quartile countries except Q2 countries where all three water body types were considered to be at equal risk (Figure 10).

Additional comments reported that it is not necessarily differences between 'water body type', but rather spatially, across the country with certain areas being more threatened due to local pressures on water quality.

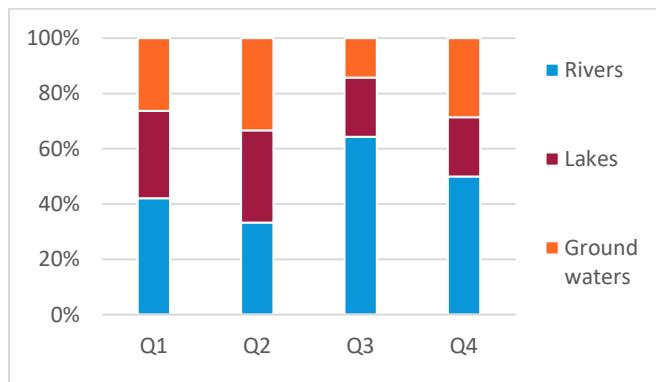


Figure 10: GDP quartile breakdown of responses to question Which water body type is most threatened in your country?

When considering threats to water quality from all countries, domestic wastewater was highlighted as the primary threat to water quality with agriculture and climate change also rated highly. Industrial wastewater was the second choice for most respondents (Figure 11).

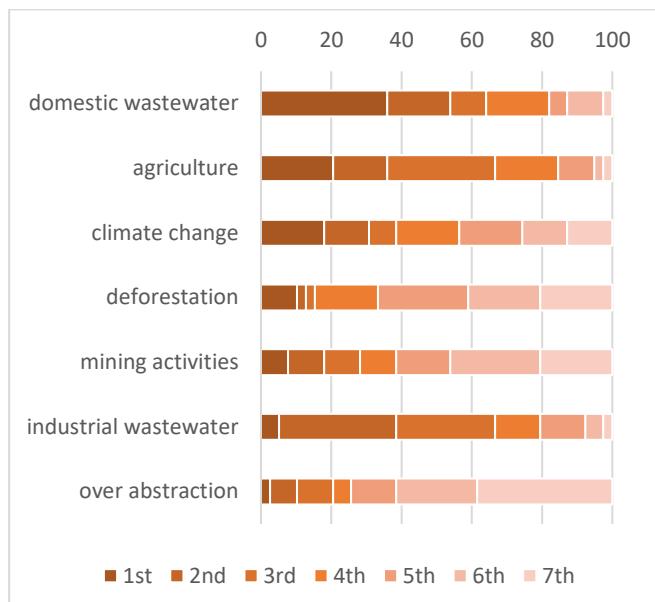


Figure 11: Proportion of responses by rank to question: From the list below, please rank (by dragging up) the greatest threats to ambient water quality in your country?

There was a marked difference when comparing Q1 and Q4 countries. Respondents from Q1 countries identified domestic wastewater and deforestation as the greatest threats (Figure 12), whereas Q4 countries identified agriculture (Figure 13).

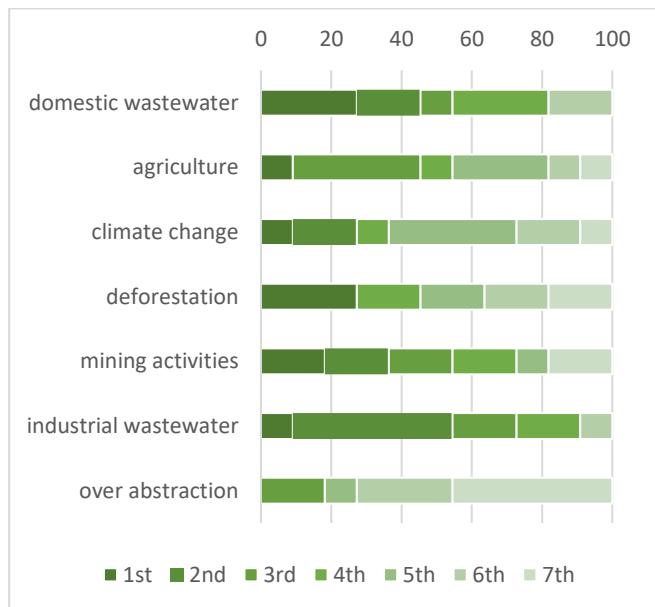


Figure 12: Proportion of responses by rank from Q1 countries to question: From the list below, please rank (by dragging up) the greatest threats to ambient water quality in your country??

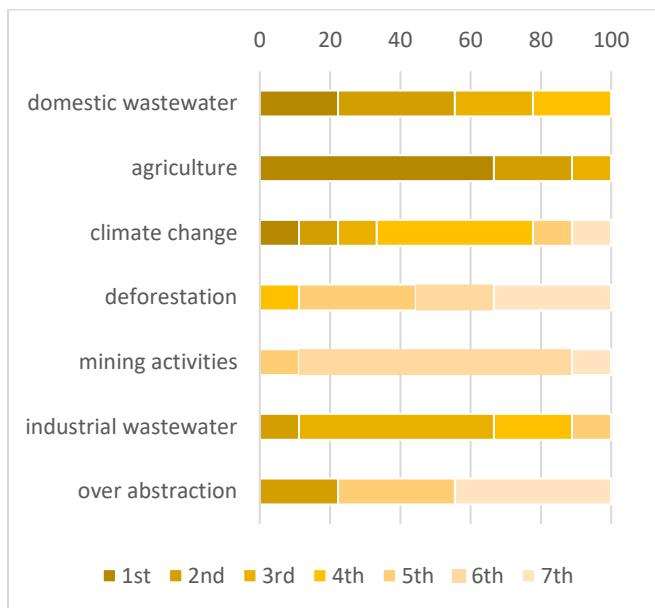


Figure 13: Proportion of responses by rank from Q4 countries to question: From the list below, please rank (by dragging up) the greatest threats to ambient water quality in your country??

Additional threats listed included: gravel mining, solid waste, climate variability, land degradation, natural geogenic contamination, illegal fishing practises, hydromorphological changes, and urban runoff.

2023 Data Drive Experience

This section of the survey included seven questions to help provide insight into the national focal points' experience of the 2023 data drive.

Respondents were asked about the additional workload needed to report on this indicator from 1 = very difficult to manage, to 10 = very easy to manage. There was little difference between GDP quartiles, but the maximum and minimums varied considerably. This possibly reflects that the national experience has a greater bearing than GDP (Figure 14).

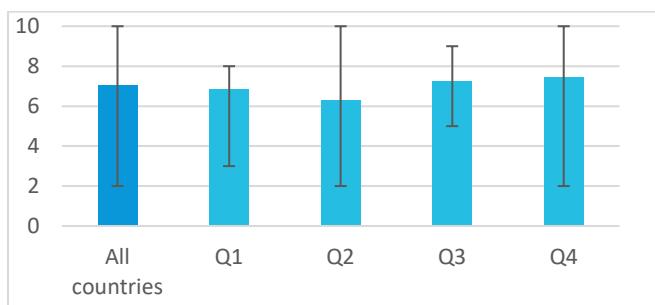


Figure 14: Average score reported to question: Was the additional workload needed to report for SDG indicator 6.3.2 in 2023 manageable? (1 = very difficult to manage, 10 = very easy to manage)

When asked about the effectiveness of communication methods used during the data drive, the responses were generally positive, although there is bias in that most respondents were from regions where engagement is

already strong (Sub-Saharan Africa, Latin America and Europe). In regions where engagement is weaker, information is insufficient to draw any conclusions (Figure 15).

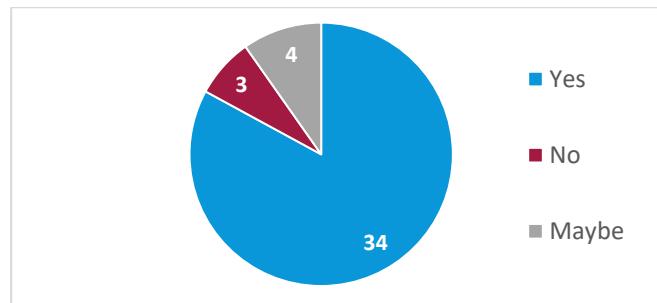


Figure 15: Proportion of respondents' answers to question: Were the methods of communication between UNEP and you effective during the 2023 data drive?

There was generally a positive response on the availability of support information (Figure 16).

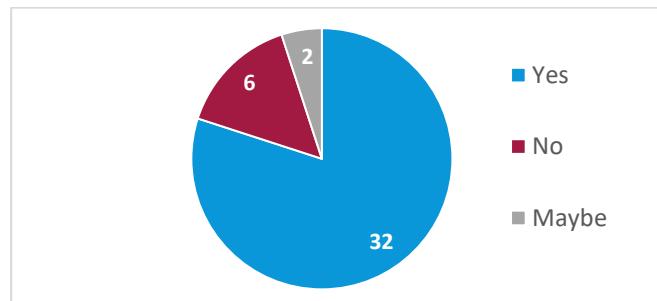


Figure 16: Proportion of responses to question: Were you able to easily find the support information that you needed during the 2023 data drive?

There was a clear trend in the responses regarding ease of data collation (Figure 17). Higher GDP per capita countries reported that data collation was easier (0 = extremely difficult to 10 = extremely easy). Given the substantially larger volume of data used by Q4 countries to report on this indicator, this pattern supports the concept that data management practices are stronger in high-income countries.

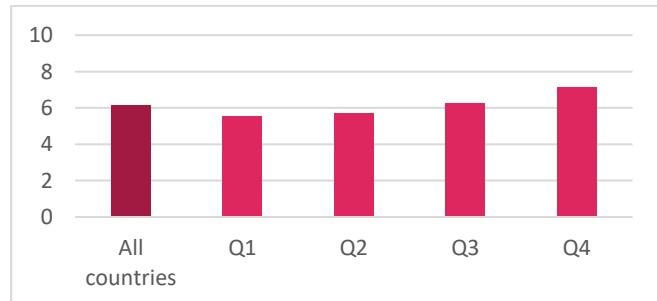


Figure 17: Mean value of responses by GDP category to question: How easy was it to collate the data that were used for reporting? (0 = extremely difficult to 10 extremely easy)

The slight majority of respondents said the data used for reporting reflected all of the data available. But several mentioned that other data were available but were not

used, or that they were unsure (Figure 18). Potential additional sources stated included ministries of health and water utilities.

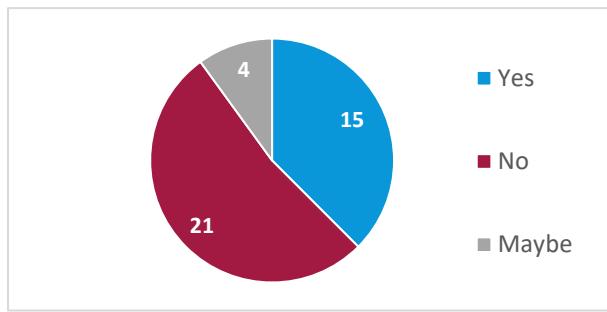


Figure 18: Proportion of responses to question: Were there any other data that could have been used that were not readily available in 2023? For example, collected by other ministries or organisations.

All four components of methodology implementation proved challenging for respondents, but 'indicator calculation' was reported as the most challenging followed by 'Collating data'. Of the four GDP categories, Q4 countries reported the least difficulties (Figure 19).

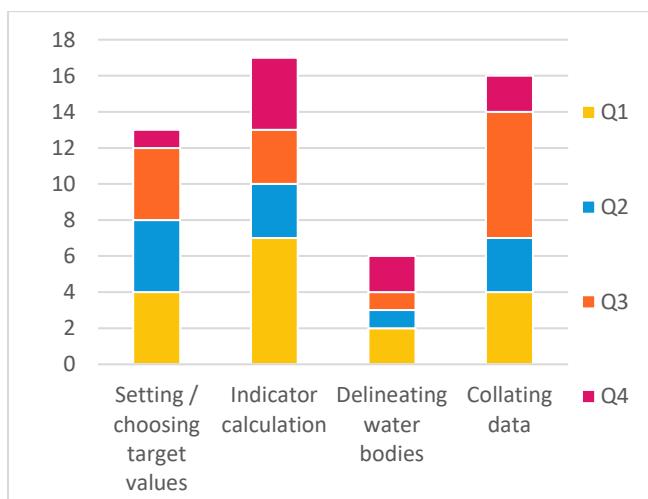


Figure 19: Count of response per GDP quartile group to question: Which aspect of the methodology implementation did you find to be the most challenging in 2023?

A majority of respondents used or reviewed the *SDG Water Quality Hub* in 2023, although the majority did not for Q4 countries (Figure 20).

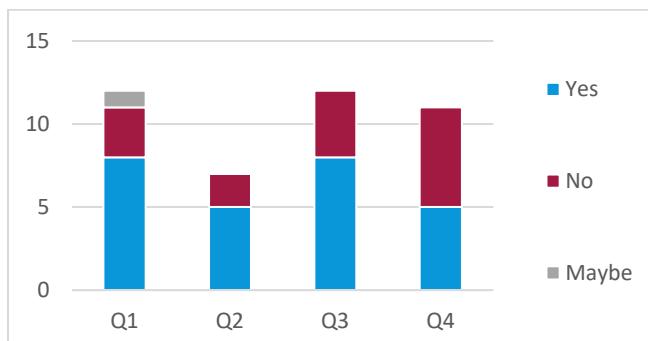


Figure 20: Count of responses by GDP category to question: Did you use or review the SDG Water Quality Hub (<https://sdg632hub.org/>) in 2023?

How can we improve implementation, support and engagement?

In this section, five questions were included to help understand how the support provided and implementation methods used by UNEP could be improved.

Most respondents were satisfied with the technical documents available. Of the four GDP categories, Q1 would like to see additional resources or documents (Figure 21).

Some suggestions included:

- more case studies from other countries;
- methods for calculating threshold values for parameters; and,
- statistical software to directly input data for automated manipulation.

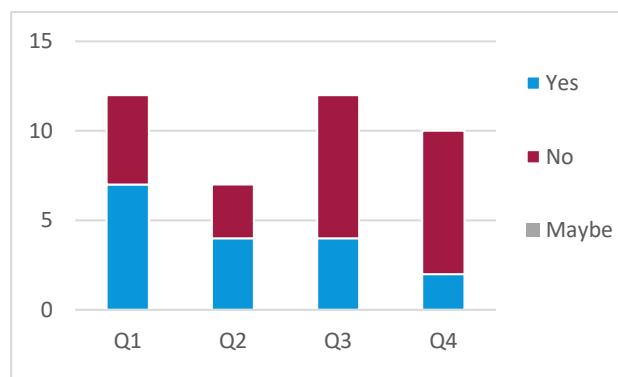


Figure 21: Count of responses by GDP category to question: Are there any technical resources or documents in addition to those available through the SDG Water Quality Hub that you would like to see made available?

Participants were asked about additional development of the SDG Water Quality Hub. Each proposal received a positive response (Figure 22). The 'automatic indicator calculation function' followed by an 'indicator score card' were the most popular.

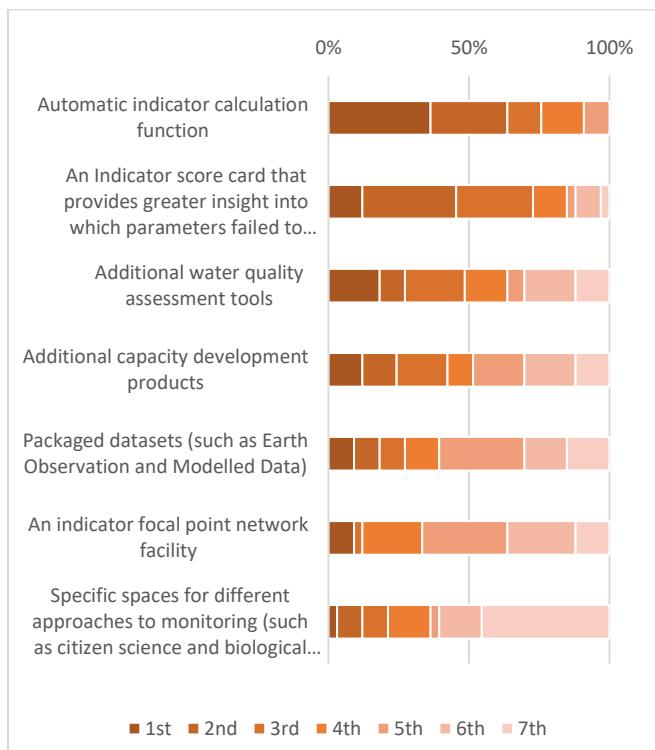


Figure 22: Proportion of responses by rank to question: UNEP GEMS/Water plans to update the SDG Water Quality Hub (<https://sdg632hub.org/>) - which additional products would you like to see on this portal?

Other suggestions included:

- visualize the monitoring sites in a map;
- cartographic module for data display; and,
- modelled projections of trend.

A majority of respondents would like to join a regional network, but less enthusiasm was observed in higher-GDP countries (Figure 23).

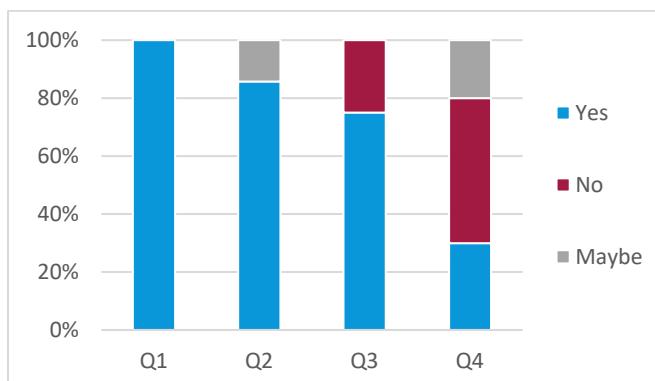


Figure 23: Proportion of responses by GDP category to question: Would you like to join a regional network of indicator focal points?

When asked of any other suggestions on how UNEP GEMS/Water can improve the implementation, support and engagement of this SDG indicator, the response have been summarised in the below points:

- Encourage the governments to invest more in publicity on the 2030 Agenda and SDG 6.3.2;

- organising training workshops (hands-on) or hackathons including data processing and indicator calculation;
- provide continuous capacity development; and,
- encourage countries to upload data into GEMStat, UNEP's global water quality database.

National and international coordination

This section included four questions designed to help better understand the current level of coordination around water and sanitation in countries.

When asked about the awareness of focal point organisations for other SDG 6 indicators, awareness depended on the indicator (Figure 24). Of the 42 participants, the greatest awareness was of the focal point for 6.1.1 (Drinking Water) and the least for 6. b.1 on Participation.

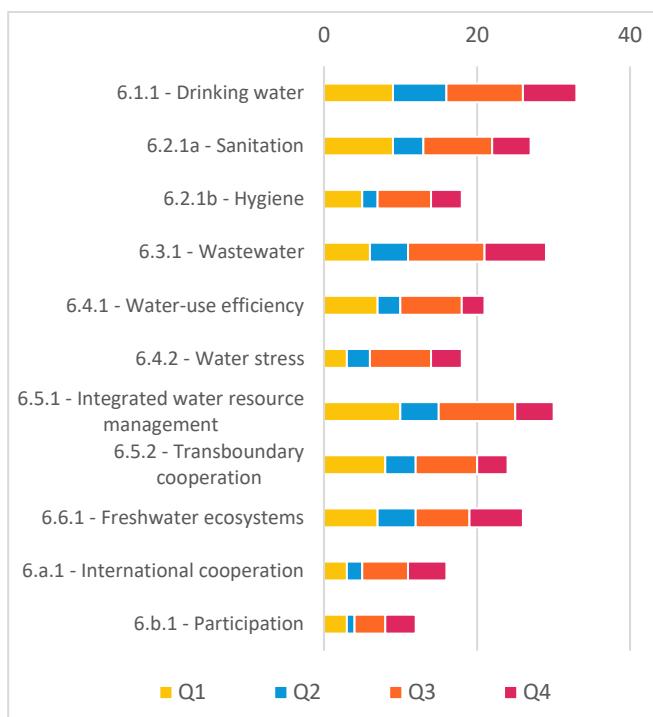


Figure 24: Count of response by GDP category to question: Please indicate if you are aware which organisation is responsible for the other SDG 6 indicators in your country?

The awareness of the overall SDG 6 focal point in each country was marginally above 50 per cent (Figure 25).

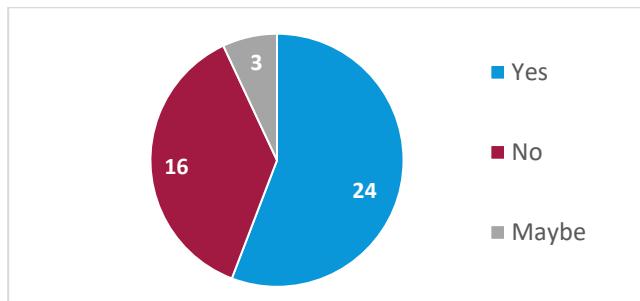


Figure 25: Proportion of responses to the question: Are you aware of the overall SDG 6 Focal Point in your country?

Involvement by the National Statistics Offices with the reporting process was confirmed in less than half of the responses (Figure 26). This was consistent across GDP categories.

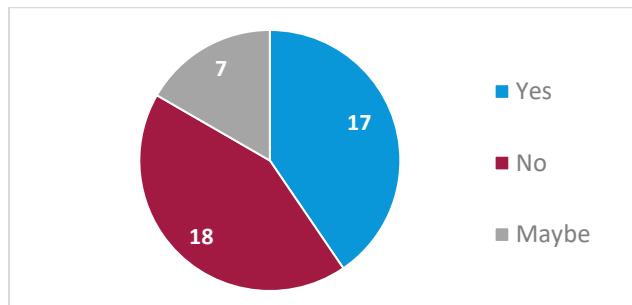


Figure 26: Proportion of responses to the question: Was the National Statistics Office of your country involved in the reporting process for this indicator?

For countries that shared transboundary waters, a large majority of respondents did not cooperate nor communicate with international colleagues on any aspect of the indicator implementation (Figure 27). This pattern was consistent across all GDP categories.

Additional comments included:

- *joint water quality surveys are undertaken;*
- *attempts are being made to harmonise water quality targets; and,*
- *yes, under the European Water Framework.*

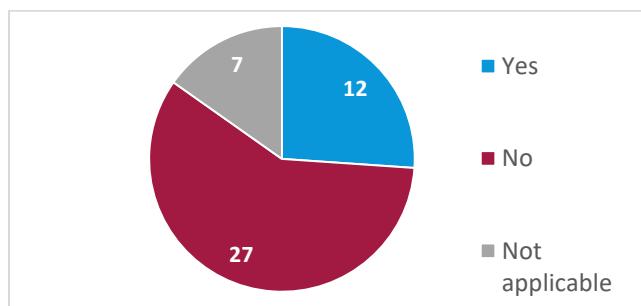


Figure 27: Proportion of responses to question: If your country shares transboundary waters, did you consider the ambient water quality monitoring programmes or the method of implementation of SDG Indicator 6.3.2 in these neighbouring countries?

Capacity Development

The survey included six questions to identify capacity development requirements in countries.

GEMS/Water has six courses available on UNEP's eLearning platform⁴ that cover key aspects of the monitoring and assessment cycle. The survey found that all six aspects were sought after, but training in data management was the most urgent, with quality assurance/quality control and groundwater monitoring following closely (Figure 28).

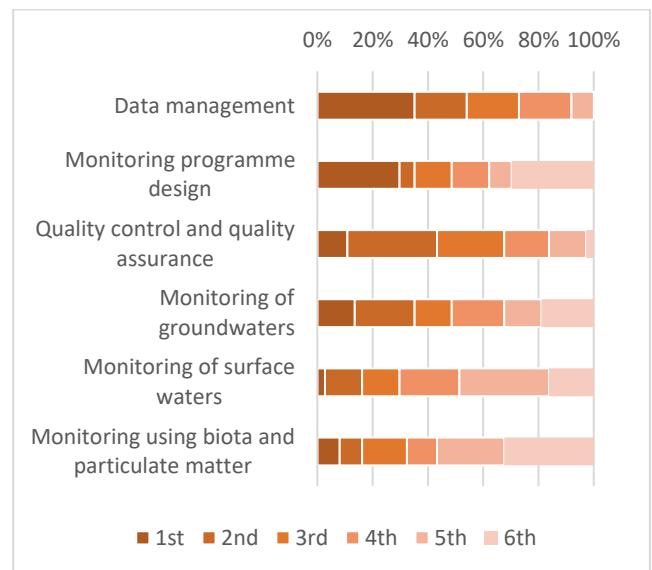


Figure 28: Proportion of responses by rank to question: To improve ambient water quality monitoring and assessment in your country, which area of training needs to be addressed most urgently?

Regarding support for the indicator calculation, out of five components listed, 'Use of existing data for calculating the indicator' was the most requested when all countries were grouped together followed closely by 'Delineation of groundwater bodies' and 'Design of ambient water quality monitoring programmes'. Also, Q1 countries identified the greatest total number of training needs (Figure 29).

Additional comments included:

- *integrating citizen science data to SDG indicator 6.3.2. report; and,*
- *develop interoperable databases to receive information from different providers.*

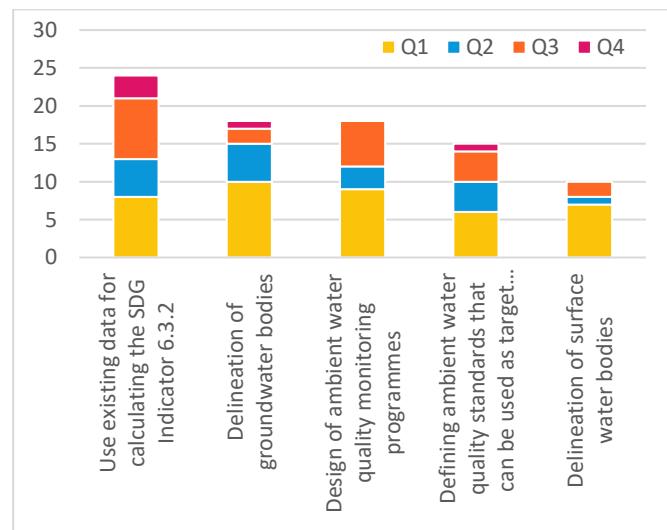


Figure 29: Count of responses by GDP category to question: Does your country need support in any aspect of the indicator calculation below?

⁴ <https://elearning.unep.org/course/index.php?categoryid=29>

When questioned specifically about awareness of biological approaches for water quality monitoring and assessment being used in their country, Q4 country respondents had the highest number of positive responses (Figure 30).

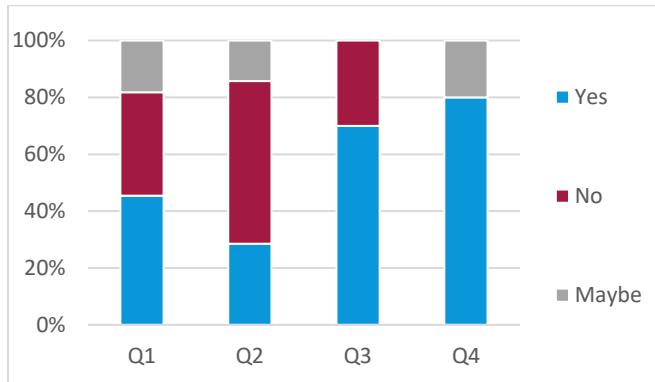


Figure 30: Count of responses by GDP category to question: Are biological approaches to water quality monitoring and assessment currently used in your country?

Interest in citizen science was highest in lower income countries (Figure 31). Additional comments included:

- *to move forward on citizen science, it is necessary to define the legal framework in order to have clarity on roles and responsibilities;*
- *I am interested especially in locations that are difficult to access;*
- *it would be very interesting to apply it in our country, mainly because of its large size, which sometimes makes sampling frequency difficult or makes it unable to react quickly to reports of contamination;*
- *I would be interested to have the possibility for land owners, to monitor their groundwater quality and share their results, to increase the spatial representivity of data available; and,*
- *especially farmers and universities.*

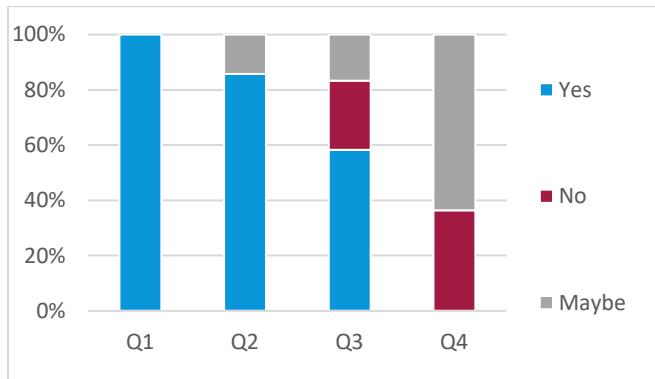


Figure 31: Count of responses by GDP category to question: Two countries (Sierra Leone and Zambia) used citizen science-generated data as part of their 2023 SDG Indicator 6.3.2 submission. Other countries are also following their lead. Would your country be interested in exploring this approach?

The majority of respondents across all GDP categories reported that satellite-based Earth Observation (EO) would

be of interest for reporting on this indicator (Figure 32). Other comments included:

- *capacity building and training is needed; and*
- *Earth Observation is already used for the chlorophyll a, CDOM, (coloured dissolved organic matter) cyanobacterial blooms and turbidity, but not for SDG reporting.*

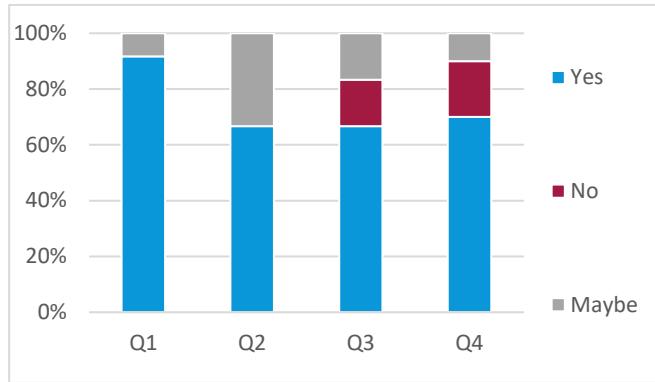


Figure 32: Count of responses by GDP category to question: Satellite-based Earth Observation is increasingly being used to better understand water quality spatial and temporal trends. Would your country consider incorporating Earth Observation products for SDG Indicator 6.3.2 reporting?

Awareness of isotope hydrology being used to manage water resources was highest in Q1 countries (Figure 33). Additional comments included:

- *projects have been carried out considering isotopes, but their use should be promoted in the country;*
- *it is currently used to assess residence times, but is not used to track contamination and would be of benefit to the country; and,*
- *it is used for one-off projects to assess the circulation of underground resources.*

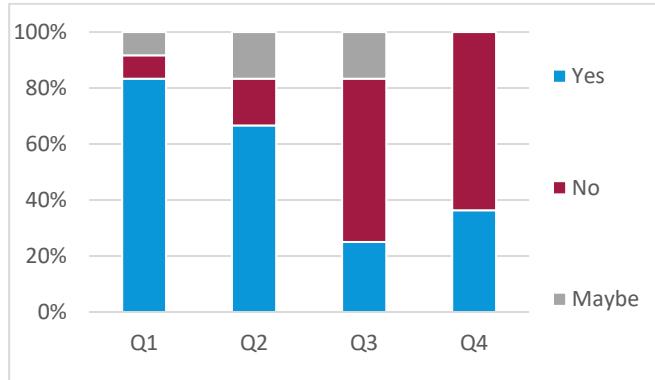


Figure 33: Count of responses by GDP category to question: Are you aware of isotope hydrology being used to manage water resources in your country? For example to trace pollution or to understand residence times of water in water bodies.

Financing

Two questions were asked about how monitoring programmes are financially resourced.

Only a few respondents reported that monitoring activities are suitably funded (Figure 34). Some additional comments included:

- *budget cuts have been faced which have limited the execution of tasks associated with monitoring;*
- *financing can become very unstable and scarce;*
- *budgets are increasingly being cut for the operation of the national water quality reference network;*
- *there are different means of funding depending on the size of the monitoring programme;*
- *the programmes are suitably budgeted for under the annual GOU fund and some additional co-funding for some. Improvements are still required so as to meet fit-for-purpose objectives;*
- *it relies on government budget which is often inadequate;*
- *water quality monitoring and assessment programmes are undertaken by a large number of organisations for many purposes; and,*
- *not suitably funded as it is perceived as a non-income generating programme.*

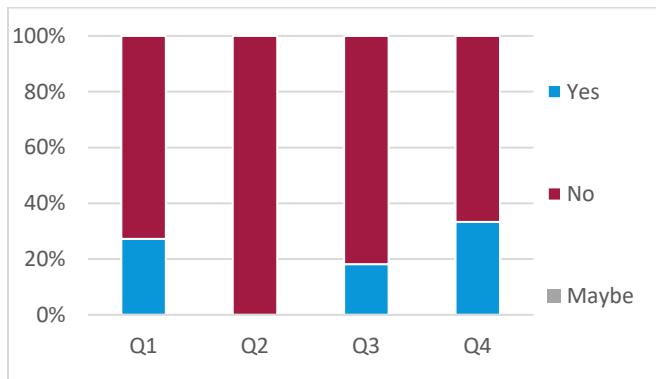


Figure 34: Proportion of responses by GDP category to question: Are water quality monitoring and assessment programmes suitably funded in your country?

When asked about where support is most urgently needed, resources to increase staff numbers was most highly rated followed by supply of laboratory equipment (Figure 35). Considering Q1 and Q2 countries – insufficient laboratory facilities was identified as the greatest need.

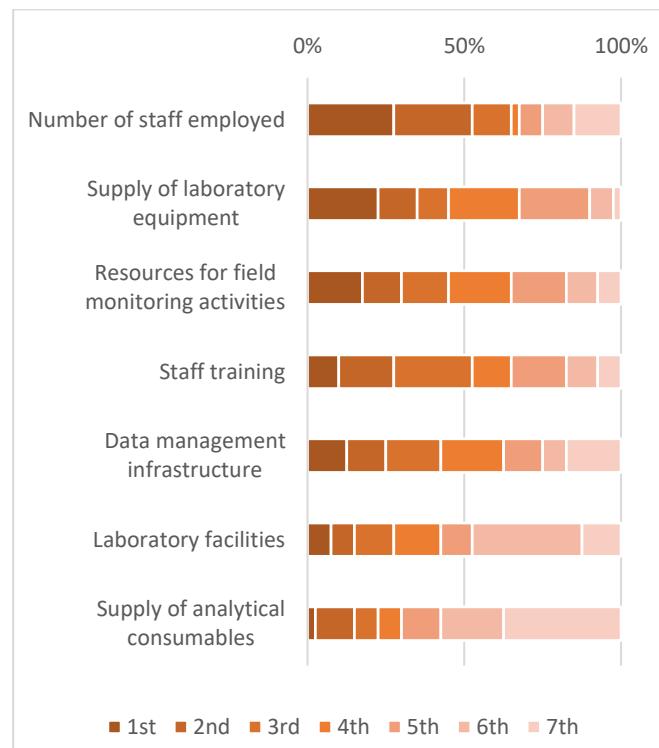


Figure 35: Proportion of responses by rank to question: Please rank the areas that need support most urgently to report for SDG indicator 6.3.2? (high rank = large weighting)

Additional Comments

An opportunity to provide any additional comments, insight or suggestions for the future implementation of this SDG indicator was provided. These have been summarised and attributed to SDG region below.

Latin America

- *Networking should be improved to socialize water quality issues and improvements*
- *Including the 6.3.2 indicator SDG in our national reporting tools and publications could be good for all.*
- *It is important to generate projects that provide resources to the entities that generate information and knowledge at different scales.*
- *We do not have much information on the use of mobile laboratories, requirements, how quality assurance compliance is checked in order to provide reliable data, validation of analytical methods in the field. This is essential in large countries like ours where the holding time of the sample can sometimes not be met. In the same way, it is essential to develop capacities in the area of monitoring of lakes, lagoons and reservoirs, the execution of which is far from that of surface waters. The implementation of studies through Citizen Science would also allow overcoming these obstacles, but this also requires training and a clear delineation of the framework for its application. Interoperability of networks is also essential. There is a lot of information out there, but it is in databases or isolated documents*

that could be used to the extent that they are based on good practices (sampling, analysis and data management).

Sub-Saharan Africa

- *Physical training sessions for the collators of data and for calculating indicator values / scores*
- *I suggest you to prepare the platform to introduce and integrate all focal points in the country to work together.*
- *Facilitation for the collaboration in transboundary reporting for SDG6.3.2*
- *Face-to-face training to master the tools needed to implement water monitoring, data management, data evaluation and indicator reporting.*
- *Data sharing and knowledge exchange between regional countries sharing transboundary water sources*
- *I will recommend strongly the use of citizen science in 2025.*
- *In developing countries, opportunity to catapult use of data-based/evidence-based information to tackle water and environment quality issues is possible when considering the globally available funding. Nonetheless, the criteria for the funding is a hinderance in the sense that mostly, only directly actionable interventions or outputs are considered, yet the biggest challenge is building the evidence through good and reliable, quality assured channels so as to have an effective impact of change. In this sense, little data is submitted for the indicator calculations to effectively track trend and interventions. This has a counter-effect that is overall negative for the national and global community at large. The advocacy for making funding more available can not be more pronounced in that regard.*
In addition, knowledge sharing and communal data security and unavailability strong arm the other faculties of change by slowing dissemination and integration of information into solutions.
- *We need more training in order to improve water quality monitoring system.*
- *Build capacities in water quality Earth Observation, data management and equipment to facilitate analysis of primary and secondary data for SDG 6.3.2 reporting.*
- *The main difficulty lies in collecting data in the field due to a lack of resources, especially financial resources.*
Sometimes it's the lack of analytical reagents that holds back sampling and analysis. Several organisations are involved in data collection, depending on the specific situation. The focal points have to collect information from all the structures in order to produce a national report, which sometimes makes the work very difficult.

Europe

- *It is necessary to supplement the surface and underground water monitoring systems with new points in order to obtain the most relevant quality data, and measures must be implemented to reduce points of water body pollution.*
- *Thank you for your great job and your ambition to improve.*

Summary and Way Forward

This latest feedback process forms an essential guide for the continuous improvement of this indicator's implementation. Building on the success of previous feedback processes, key changes to implementation will be developed in preparation for the fourth global data drive scheduled for 2026.

The summary actions listed here are categorised under headings of: Capacity Development; Networking and Outreach; Implementation Improvement; and, SDG Water Quality Hub Functionality, followed by a list of potential pilot studies and projects that will be pursued through existing and new partnerships of the World Water Quality Alliance (WWQA).

Capacity Development

Capacity development is central to ensure that countries are able to continually improve their monitoring and assessment activities.

Indicator Calculation Support

Rationale: Of the four components of methodology implementation 'indicator calculation' was reported as the most challenging.

Action 1.1.1: UNEP GEMS/Water will continue to provide the 'indicator calculation service'.

Action 1.1.2: UNEP GEMS/Water will work to develop a tool that fully automates the process.

Action 1.1.3: UNEP GEMS/Water will develop an online training video to demonstrate how to calculate the indicator using available data.

Develop Data Management Capacity

Rationale: GEMS/Water has six courses available on UNEP's eLearning platform that cover key aspects of the monitoring and assessment cycle. The survey found that all six courses were sought after, but training in data management was the most urgent, with quality assurance/quality control and groundwater monitoring following closely.

Action 1.2.1: Building on an ongoing project to improve data management capacity, UNEP GEMS/Water will develop a 'deployable' water quality database for countries that will include an SDG indicator calculation function.

Action 1.2.2: Continue to share the eLearning courses including the one on data management.

1.3: Translation of courses

Rationale: Recognising that the water quality monitoring and assessment eLearning courses are only available in

English and uptake of the indicator could be improved in several non-English speaking regions.

Action 1.3.1: Develop translated versions of existing GEMS/Water Capacity Development Centre's courses. Efforts to develop versions in Spanish for the Latin America region are already underway, but additional partnerships are needed for similar initiatives in other world regions.

Networking and Outreach

These actions could help to improve communication between those already working with this indicator and expand its reach to those that could benefit from using it.

Provide networking facility

Rationale: A majority of respondents would like to join a regional SDG Indicator 6.3.2 network.

Action 2.1.1: UNEP GEMS/Water will map focal points for each SDG region and contact them regarding sharing of contact details. Regional meetings will be scheduled to establish each network.

Increase Engagement in Asian Regions

Rationale: Given the lack of reporting and respondents to this survey, additional efforts are needed to engage with several Asian regions. This will be done

Action 2.2.1: Increase efforts to engage and communicate in Northern Africa and Western Asia region through UN Country Teams and UNEP Regional Offices.

Action 2.2.2: Identify international events for participation in 2026 where awareness of this indicator can be raised.

Promote Transboundary Cooperation

Rationale: For countries that shared transboundary waters, a large majority of respondents did not cooperate nor communicate with international colleagues on any aspect of the indicator implementation (Figure 27). This pattern was consistent across all GDP categories.

Action 2.3.1: Contact SDG Indicator 6.5.2 (transboundary cooperation) team with suggestion of a joint outreach campaign to both indicator networks.

Implementation Improvements

Improvements to the means of implementation of the indicator will ensure the indicator continues to evolve at the request of the national focal points whilst reflecting changes in available water quality products and technologies.

Develop a Biological Level 2 Methodology

Rationale: The majority of countries already collect biological data but only in high-income countries are the biological data used for national assessments. In many

lower-income countries, biological approaches are restricted to academic or non-governmental organisations.

Action 3.1.1: Work has already started with partners through the WWQA and UNEP GEMS/Water to develop a biological technical document that outlines a biological global methodology. This methodology will provide various entry points dependent on existing capacity and activities.

Develop a Macroplastics Level 2 Methodology

Rationale: Plastics are included as a Level 2 parameter for this indicator already, and given the significant amount of interest in plastics pollution, linking macroplastics and this SDG indicator could be of mutual benefit.

Action 3.2.1: Develop a macroplastics technical document that outlines a macroplastics global methodology. Work has already started with partners through the WWQA and UNEP GEMS/Water to develop this methodology. It will provide various entry points dependent on existing capacity and activities.

Develop a Satellite-based Earth Observation Level 2 Methodology

Rationale: The majority of respondents across all GDP categories reported to that satellite-based Earth Observation would be of interest for reporting on this indicator.

Action 3.3.1: Develop an indicator-specific EO Level 2 indicator. Through the WWQA, UNEP GEMS/Water and partners are already exploring opportunities to align existing EO approaches to provide an overall 'EO-based SDG global indicator' that can also provide additional information for local-level information generation.

SDG Water Quality Online Hub Functionality

Rationale: Each proposal for development of the SDG Water Quality Hub received a positive response with the 'automatic indicator calculation function' followed by an 'indicator score card' being the most sought after.

Action 3.4.1: An 'automatic indicator function' will be made available on the SDG Water Quality Hub based on Action 1.1.2.

Action 3.4.2: Integrate 'indicator scorecard' into indicator calculation tool. The scorecard can only be made available to those countries that share the water quality indicator.

Action 3.4.3: Explore the development of 'cartographic module' that allows monitoring station level information to be displayed.

Potential Case Studies

Case studies are useful to help showcase how challenges to implementation can be overcome at the national level, and also to highlight SDG Indicator 6.3.2-specific work that is already ongoing.

National Case Studies from Under-Represented Regions

National Focal Points from world regions that are under-represented in the global data will be approached to create a short case study focussing on their countries' challenges and a description of how these challenges were overcome. These region-specific case studies will be circulated in readiness for the 2026 data drive and serve as a reference point for those countries that are yet to report.

Biological Monitoring

Biological monitoring is widely used globally to understand changes in water quality, but so far, no country has explicitly used biological monitoring data to report on this indicator.

With the development of the new Technical Document on Biological Monitoring, a country case study will be included to make clear the benefits of the approach.

Earth Observation

A satellite-based Earth Observation water quality component is already included in SDG Indicator 6.6.1. Efforts are already underway to update this approach and to ensure that the new methodology can be incorporated into SDG Indicator 6.3.2 reporting as well as have additional benefits for water resources management.

One option would be to expand an ongoing Lake Tanganyika project being implemented through the WWQA Earth Observation Workstream into a transboundary case study.

Citizen Science

Efforts to promote the use of citizen-generated data for SDG Indicator 6.3.2 reporting have already yielded results with Sierra Leone and Zambia adopting this approach.

Drawing upon the experiences of the Sierra Leone team who are the most advanced in this approach, a targeted case study that makes clear the approach will help other interested countries to follow suit.

River Basin Indicator Calculation

Calculation of the indicator at the river basin scale, transcending international borders will help highlight the need for cooperation on certain aspects of the indicator methodology including target value setting and monitoring programme design.

Several river basins have potential, but given the greater volume of data available in high-income countries, and the presence of ambient water quality standards in Europe through the Water Framework Directive, major European river basins will be explored for feasibility.

Next Steps

This feedback process supports efforts to continue to expand the global coverage of this indicator, whilst balancing the need to ensure the indicator remains nationally relevant and globally comparable.

The findings from this feedback process will be included in the 'Data Drive Implementation Strategy' to be completed in November 2025.

This strategy document will lay the foundation for the fourth global data drive. Member States will be requested to report starting April 2026, and through the refinement of the methodology and its implementation, the target for reporting countries is 150 of 193 Member States. This builds on the incremental increase of 39, 89 and 120 Member States for the preceding data drives of 2017, 2020, and 2023 respectively

